Permutations Combinations

DigitalOcean Referral Badge DigitalOcean Referral Badge

1.

In how many different number of ways 4 boys and 2 girls can sit on a bench?

   A.) 620
   B.) 640
   C.) 720
   D.) None of these

Answer: Option ''

Answer: Option 'C'
npn = n! 
6p6
= 6 × 5 × 4 × 3 × 2 × 1 = 720

DigitalOcean Referral Badge

2.

In how many different number of ways 5 men and 2 women can sit on a shopa which can accommodate persons? 

   A.) 230
   B.) 203
   C.) 220
   D.) 210

Answer: Option 'D'

Answer: Option 'D' 
7p3 = 7 × 6 × 5 = 210

DigitalOcean Referral Badge

3.

In how many different number of ways 4 boys and 3 girls can sit on a bench such that girls always sit together. 

   A.) 720
   B.) 5040
   C.) 4320
   D.) None of these

Answer: Option 'A'

Answer: Option 'A'

DigitalOcean Referral Badge

4.

In how many different ways can the letters of the word "CLAIM" be rearrangement? 

   A.) 120
   B.) 125
   C.) 130
   D.) None of these

Answer: Option 'A'

Answer: Option 'A' 
The total number of arrangements is 
5P5  = 5! = 120

DigitalOcean Referral Badge
    DigitalOcean Referral Badge DigitalOcean Referral Badge

5.

If the letters of the word PLACE are arranged taken all at a time, find how many do not start with AE. 

   A.) 142
   B.) 141
   C.) 114
   D.) None of these

Answer: Option 'C'

Answer: Option 'C' 
Total no'of arrangements 5P5  = 5! = 120 
no'of arrangements start with AE = 1 × 6 = 6 
no'of arrangements which do not start with AE = 120 - 6 = 114.

DigitalOcean Referral Badge

6.

How many arrangements of the letters of the word BEGIN can be made, without changing the place of the vowels in the word? 

   A.) 7 ways
   B.) 6 ways
   C.) 5 ways
   D.) 2 ways

Answer: Option ''

Answer: Option 'B' 
E,I fixed. Consonants can be arrangements in 3P3 = 3! = 6 ways

DigitalOcean Referral Badge

7.

If all the numbers 2, 3, 4, 5, 6, 7, 8 are arranged, find the number of arrangements in which 2, 3, 4, are together? 

   A.) 720
   B.) 620
   C.) 700
   D.) None of these

Answer: Option 'A'

Answer: Option 'A'
If (2 3 4) is one. 
we must arrange (2 3 4), 5, 6, 7, 8 in 
5P5 = 5! = 120 ways 
2, 3, 4 can be arranged in 3P3 = 3! = 6 
120 × 6 = 720.

DigitalOcean Referral Badge

8.

Find 10P6 

   A.) 150200
   B.) 151200
   C.) 152200
   D.) None of these

Answer: Option ''

Answer: Option 'B'
10P6 = 10!/4! = 10 × 9 × 8 × 7 × 6 × 5 
= 151200.

DigitalOcean Referral Badge

9.

Find 9P3

   A.) 414
   B.) 514
   C.) 504
   D.) None of these

Answer: Option 'B'

9P3 = 9!/6! = 9 × 8 × 7
= 504.

DigitalOcean Referral Badge
    DigitalOcean Referral Badge DigitalOcean Referral Badge

10.

Find 7P7

   A.) 4440
   B.) 5040
   C.) 5045
   D.) None of these

Answer: Option 'B'

7P7 = 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

DigitalOcean Referral Badge

Permutations Combinations Download Pdf